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Abstract 

Background: Multiple sclerosis (MS) is a central nervous system disease with a high disability rate. Modern molecular 
biology techniques have identified a number of key genes and diagnostic markers to MS, but the etiology and patho-
genesis of MS remain unknown.

Results: In this study, the integration of three peripheral blood mononuclear cell (PBMC) microarray datasets and 
one peripheral blood T cells microarray dataset allowed comprehensive network and pathway analyses of the bio-
logical functions of MS-related genes. Differential expression analysis identified 78 significantly aberrantly expressed 
genes in MS, and further functional enrichment analysis showed that these genes were associated with innate 
immune response-activating signal transduction (p = 0.0017), neutrophil mediated immunity (p = 0.002), positive 
regulation of innate immune response (p = 0.004), IL-17 signaling pathway (p < 0.035) and other immune-related 
signaling pathways. In addition, a network of MS-specific protein–protein interactions (PPI) was constructed based 
on differential genes. Subsequent analysis of network topology properties identified the up-regulated CXCR4, ITGAM, 
ACTB, RHOA, RPS27A, UBA52, and RPL8 genes as the hub genes of the network, and they were also potential biomark-
ers of MS through Rap1 signaling pathway or leukocyte transendothelial migration. RT-qPCR results demonstrated 
that CXCR4 was obviously up-regulated, while ACTB, RHOA, and ITGAM were down-regulated in MS patient PBMC 
in comparison with normal samples. Finally, support vector machine was employed to establish a diagnostic model 
of MS with a high prediction performance in internal and external datasets (mean AUC = 0.97) and in different chip 
platform datasets (AUC = (0.93).

Conclusion: This study provides new understanding for the etiology/pathogenesis of MS, facilitating an early identifi-
cation and prediction of MS.

Keywords: Biomarker, Support vector machine approach, Multiple sclerosis, Bioinformatics, Protein–protein 
interaction
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Background
Multiple sclerosis (MS), which is a chronic inflammatory 
disease at the central nervous system of autoimmune eti-
ology [1], is characterized by varying degrees of demyeli-
nation and axonal loss. MS predominantly affects young 

women (between the ages of 20 and 40) and is a lead-
ing cause of disability among young adults in the United 
States [2]. About 2.5 million cases have been reported all 
over the world, with about 400,000 taking place in the 
United States, moreover, the number of cases is expected 
to increase in the future [3–5]. Multiple factors includ-
ing Epstein-Barr virus (EBV) infection [6], Vitamin D 
deficiency [7], smoking [8], and a high sodium diet [9] all 
contribute to the risk of developing MS. The pathogenesis 
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of MS involves an immune attack against central nervous 
system (CNS) antigens, resulting in a sustained auto-
reactive T-cell Peripheral activation [10, 11], Then post-
activation myelin-reactive T Cells are able to penetrate 
the blood–brain barrier (BBB) into the central nervous 
system [12] to recruit other inflammatory cells, including 
T cells, monocytes, and B cells[13]. Long-term activation 
of microglia and macrophages will lead to destruction of 
myelin [14], and the activate resident glial cells such as 
microglia will cause persistent inflammation [15]. So far, 
however, immunomodulator therapy and symptomatic 
treatment are considered as two main strategies for treat-
ing MS, but they can only improve the body functions 
[16]. Several studies have shown that susceptibility to MS 
is genetically dependent [17, 18], but the specific genetic 
factors remain largely unknown. Therefore, the identifi-
cation of risk alleles or candidate genes that play impor-
tant role in the pathogenesis of MS remains a challenge.

MS, which is a chronic, progressive, immune-mediated 
disorder of the CNS, is characterized by neurodegen-
eration resulted from inflammation, demyelination and 
Axonal damage [19]. Currently, we still lack early diag-
nosis and management of MS [20], thus, biomarkers 
effective for MS identification are urgently needed. Bio-
informatics analysis of gene expression profiles facilitate 
the screening of MS biomarkers. Dorothee Nickles et al. 
[21] compared the gene expression profiles of whole-
blood RNA samples derived from both healthy individu-
als and MS patients, and identified abnormal individual 
transcripts and biological pathways in MS patients. Jef-
frey M Trent et  al. [22] performed gene expression 
profiling on peripheral blood mononuclear cells for iden-
tifying MS-related candidate genes by cDNA microar-
rays; Teresa Maria Creanza et al. [23] adopted differential 
network approach and demonstrated that MS networks 
showed a low connectivity relative to health status, and 
they also proved that interferon treatment can activate 
gene transcription. These studies have demonstrated the 
feasibility of screening key biomarkers for MS based on 
gene expression profiles. They designed different analysis 
strategies and got different results. It is well known that 
there are multiple optimal solutions for high-dimensional 
data analysis, but it is worth mentioning that these stud-
ies have focused on a single dataset of MS patients, in 
comparison, gene expression profiling of large samples 
from multiple cohorts to identify biomarkers will be 
more reliable in developing new biomarkers for early pre-
vention and management of MS.

Biomarkers for MS can help diagnose, predict the 
disease course or determine the outcome of treatment 
response. Although biomarkers and extensive research 
are needed to identify them, the validation and clinical 

application of biomarkers in multiple sclerosis remains 
unmet. There is still a large gap between exploratory 
biomarkers proposed in many studies, proven biomark-
ers, and biomarkers incorporated into routine clinical 
practice.

This study used high-throughput gene expression 
profiles from a large cohort of MS patients to inves-
tigate the alterations of expression profiling patterns 
between MS patients and healthy individuals, aiming to 
identify potential biomarkers and to develop a diagnos-
tic model of MS patients.

Results
Identification of differentially expressed gene between MS 
samples and healthy controls samples
Data sets GSE21942, GSE43591 and GSE17048 were 
obtained from GEO and standardized for consistent 
data distribution (Fig.  1a). 78 differentially expressed 
gene (DEGs) were finally screened after data pre-pro-
cessing and quality control. Among the 78 DEGs, 47 
genes were down-regulated in the disease group, while 
31 genes were down-regulated in the healthy group, and 
the fold change heatmap of these DEGs in each dataset 
is shown in Fig. 1b. The GSEA enrichment results of the 
DEGs in each data set are shown in Fig. 1c, and it can 
be seen that DEGs were mainly enriched in the group 
with high fold change in each data set.

Functional enrichment analysis of DEGs
To better understand the functional involvement of the 
DEGs, GO and KEGG functional enrichment analysis 
were performed on the 78 DEGs. The results showed 
186 enriched GO terms, which were mainly enriched 
to toll-like receptor signaling pathway, pattern rec-
ognition receptor signaling pathway, innate immune 
response-activating signal transduction (Fig. 2a). Inter-
estingly, these enriched pathways are important biolog-
ical pathways involved in the immune process, and this 
is consistent with the nature of MS as an immune sys-
tem disease. In addition, these genes were also enriched 
to bacterial invasion of epithelial cells, leukocyte 
transendothelial migration, chemokine signaling path-
way, regulation of actin cytoskeleton, yersinia infection, 
ribosome, and IL-17 signaling pathway (Fig.  2b). Sev-
eral of above listed pathways are associated with the 
development of MS, such as the IL-17 signaling path-
way, which plays an important role in the pathogenesis 
of many autoimmune diseases including MS [24], and 
leukocyte transendothelial migration, which is a key 
feature of MS pathology [25].
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Identification of potential biomarkers associated with MS 
diagnosis
To examine the interactions among the 78 DEGs, each 
gene was mapped into the String database to obtain gene 
interactions, according to the threshold of a minimum 
required interaction score > 0.4 (medium confidence). 
After visualizing the gene interactions by Cytoscope, 
we found that the 78 DEGs were mapped into a total of 
124 interactions in the network (Fig. 3a). The cytoHubba 
plugin in Cytoscope was used for hub gene identifica-
tion, with the employment of three calculation methods 
(Degree, Closeness and Betweenness). The sub-networks 
of the top 10 genes evaluated by the three calculation 
methods are shown in Fig.  3b–d. It can be seen that 
hub genes with high degree, closeness and betweenness 

were generally consistent and showed interaction with 
multiple genes in the network. We further analyzed the 
topological properties of the network, and found that 
the distribution of degrees in the network (Fig. 3e) dem-
onstrated a power-law distribution, which is consistent 
with biological network characteristics, as most of the 
gene degrees were less than 7. In addition, by calculating 
the closeness of the network, we found that most of the 
nodes have an overall high closeness of basically above 
15 (Fig. 3f ). Finally, the betweenness of the network was 
calculated and most nodes had a betweenness below 100 
(Fig. 3g). Nodes with high degree, closeness or between-
ness were considered as important nodes in the network. 
Top 5%,10%,15%,20%,25%,30% of the nodes with the 
highest degree, Closeness, and Betweenness as hub genes 

Fig. 1 a Boxplots of overall expression levels of sample after standardization (blue: normal samples, red: MS samples). b Heatmap of DEGs in 
integrated microarray analysis, where the color in each rectangle represents the value of log2(foldchange), each row represents a dataset, and each 
column represents a gene. The gradient color from blue to red represents the change from down- to up-regulation. c Enrichment results for DEGs in 
the three datasets
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of the network were selected respectively, and GSE17048 
was used as the training set to observe the classification 
performance under different thresholds (Additional file 1: 
Figure S1A). With the increase of the threshold, the num-
ber of included genes gradually increased, and the AUC 
also gradually increased. When the AUC rose slowly after 
20%, we chose the top 20% as the threshold. By select-
ing the top 20% of the nodes with the highest degree, 
closeness, and betweenness as hub genes of the network, 
here, seven hub genes, namely, CXCR4, ITGAM, ACTB, 
RHOA, RPS27A, UBA52, and RPL8, were determined. 
Specifically, CXCR4 has multifunctional effects, and is 
widely involved in a variety of pathological conditions, 
including immune diseases, viral infections and can-
cer [26]. RhoA, which is a ubiquitously expressed cyto-
plasmic protein, belongs to the small GTPase family of 
enzymes, and acts as a molecular switch and is activated 
in response to the binding of chemokines, cytokines 
and growth factors. Mutations in Rho and Rho regula-
tory factors predispose to autoimmune diseases and are 
the cause of malignancies of the hematopoietic system 
[27]. These findings suggest that the seven hub genes 
could serve as potential biomarkers for MS, and that it is 

effective to mine MS-associated markers by constructing 
MS-specific protein interaction networks.

Construction and verification of the MS diagnostic model
We used GSE17048 as a training dataset (N = 144, 
MS = 99, Normal = 45), GSE21942 (N = 29, MS = 14, 
Normal = 15) and GSE43591 (N = 20, MS = 10, Nor-
mal = 10) as validation sets, and GSE15245 (N = 65, 
MS = 51, Normal = 14) as the independent validation set. 
Seven hub genes served as features in training data set, 
and their corresponding gene expression profiles were 
obtained. Then, the classification model was established 
by support vector machine (SVM). By applying tenfold 
cross-validation in the model test, 134 out of the 144 
samples were correctly classified, with a classification 
accuracy of 93.06%, model sensitivity to MS of 96.97%, 
specificity of 84.44%, and area under the ROC curve 
(AUC) was 0.907 (Fig. 4a). Furthermore, the established 
model was used to predict the samples in the valida-
tion data set to test the prediction ability of the model. 
In the validation datasets GSE21942 and GSE43591, 
all the samples were correctly classified, with a classi-
fication accuracy of 100%, moreover, the sensitivity and 

Fig. 2 Functional enrichment analysis of 78 DEGs. a Enriched GO terms of DEGs. b Enriched KEGG biological pathways of DEGs. Different colors 
represent different functions, and the hyphen represents gene correspondence enrichment to GO term or KEGG biological pathways
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specificity of the model for MS were all 100%, and the 
area under the receiver operating characteristic (ROC) 
curve was 1 (Fig.  4b, c). We merged the GSE21942 and 
GSE43591 datasets and applied the model to the merged 
dataset with an AUC of 0.96 (Fig. 4d). In the independ-
ent validation set GSE15245, 63 out of 65 samples were 
correctly classified with 96.92% classification accuracy, 

and the sensitivity and specificity of the model for MS 
were 100% and 85.71%, respectively, and the area under 
the ROC curve (AUC) was 0.929 (Fig. 4e). In addition, in 
the GSE15245 data set, the model was applied to samples 
of different genders, and it was observed that the AUC 
of Male samples was 0.916 (Additional file 2: Figure S2A) 
and that of Female samples was 0.91 (Additional file  2: 

Fig. 3 PPI protein interaction network analysis. a The protein interaction network of DEGs. b Hub nodes identified by the Degree method. c Hub 
nodes identified by the Closeness method. d Hub nodes identified by the Betweenness method. e Degree distribution of the network. f Closeness 
distribution of the network. g Betweenness distribution of the network. In b–d, the redder of the node in the network, the higher of the score
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Figure S2B), indicating that the prediction performance 
was similar in samples of different genders. According to 
the age distribution of the sample, the AUC of the model 
in the > 30  years sample was 0.9 (Additional file  2: Fig-
ure S2C) and the AUC of the model in the <  = 30  years 
sample was 0.88 (Additional file 2: Figure S2D), suggest-
ing that the predictive performance of the model was 
similar across age groups. To further confirm the role 
of the seven genes, RT-qPCR was performed to detect 

the expressions of genes in the PBMC samples of MS 
patients. We found that in the PBMC samples of MS 
patients when compared with normal samples, CXCR4, 
RPL8 and RPS27A were obviously up-regulated, and 
UBA52 and RHOA were down-regulated (Fig. 5). Though 
the sample size may be relatively small, these results indi-
cated that the diagnostic prediction model constructed 
in this study can effectively distinguish patients with MS 
from normal controls, and that the seven hub genes can 
be used as reliable biomarkers for MS diagnosis.

Fig. 4 Construction of diagnostic model and validation of model. a Classification results and ROC curves of samples by diagnostic model in training 
data set. b Classification results and ROC curves of samples by diagnostic model in GSE21942. c Classification results and ROC curves of samples by 
diagnostic model in GSE43591. d Classification results and ROC curves of samples by diagnostic model in GSE43591 + GSE21942. e Classification 
results and ROC curves of samples by diagnostic model in GSE15245
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Discussion
As is a chronic and progressive autoimmune dis-
ease, multiple sclerosis (MS) is a leading cause of dis-
ability to young adults [20]. However, the pathogenesis 
and progression of MS remain unclear. In this study, 
gene expression profiles of peripheral blood samples 
were analyzed by bioinformatics based on multiple 
microarray datasets. The results of functional enrich-
ment analysis showed that differentially expressed 
genes were associated with Toll-like receptor signal-
ing pathway, pattern recognition receptor signaling 
pathway, innate immune response-activating signal 
transduction, leukocyte transendothelial migration, 
IL-17 signaling pathway and immune-related signal-
ing pathways. In MS, abnormalities of immune systems 
involve leukocyte transendothelial migration, IL-17 
signaling pathway, and abnormalities of innate immune 
response-activating signal transduction pathway, here, 
innate and adaptive immunity play an important role 
[10, 15]. Moreover, immune dysregulation has been 
confirmed as an important mechanism in MS. It has 
been shown that leukocyte transendothelial migra-
tion is a driving factor in initiating an inflammatory 
immune response [28]. Above findings indicate that the 
pathogenesis of MS is multifactorial, complex, and is 
influenced by inflammation and external environment. 
CXCR4, ITGAM, ACTB, RHOA, RPS27A, UBA52, 
and RPL8 genes were identified as hub genes of the PPI 
network. Among them, CXCR4, ITGAM, ACTB, and 
RHOA are jointly involved in the Rap1 signaling path-
way, leukocyte transendothelial migration, regulation 
of actin cytoskeleton processes; RPS27A, UBA52 and 

RPL8 genes are implicated in the ribosomal pathway 
(Additional file 1: Figure S1B).

CXCR4 is expressed in a variety of tissues, including in 
lymph nodes, brain, liver, colon, kidney, testis, lung, pan-
creas, skin and placenta, and in different cell types such 
as stromal cells, osteoblasts, fibroblasts, dendritic cells 
and monocytes [29, 30]. Focal areas of myelin destruction 
observed in MS often occur on a background of inflam-
mation dominated by T-lymphocytes, hematogenous 
macrophages, microglial activation, and the presence 
of few B-lymphocytes and plasma cells [31, 32]. In vitro 
studies have shown that microglial activation leads to up-
regulation of CXCR4 [33, 34].

ITGAM is a major non-human leukocyte antigen, and 
plays an important role in leukocyte activation, adhe-
sion and migration through stimulated endothelium and 
in phagocytosis of complement-encapsulated granules 
and neutrophil apoptosis [35]. ITGAM is associated with 
the pathogenesis of systemic lupus erythematosus (SLE) 
[36], and an increasing number of studies have shown a 
genetic association between ITGAM and various auto-
immune diseases [37–39]. RHOA is a ubiquitously 
expressed cytoplasmic protein that belongs to the small 
GTPase family. RhoA acts as a molecular switch and is 
activated in response to the binding of chemokines, 
cytokines and growth factors, moreover, as RhoA regu-
lates the activation of cytoskeletal proteins and other 
factors through the mDia and ROCK signaling cascades, 
it is therefore regarded as a key regulator of innate and 
adaptive immunity [27]. In animal models of MS, absence 
of RhoA in T cells will reduce the number of mature T 
cells in the thymus and spleen, thereby significantly 
attenuating the incidence and severity of MS. RhoA is a 
central regulator of several prototypical T cell responses 
and a new potential therapeutic target for diseases such 
as MS [40]. ITGAM and RHOA showed a high degree 
and closeness in our PPI, therefore, we speculated that 
ITGAM and RHOA may be involved in MS through the 
regulation of T-cell activation.

ACTB encodes β-actin, an abundant cytoskeletal 
housekeeping protein. Sharp reduction of ACTB pro-
tein will change cell shape, migration, proliferation and 
gene expression, thereby impairing the development of 
the brain, heart and kidneys [41]. Pathogenic variants of 
ACTB are commonly associated with Baraitser-Winter 
prefrontal brain syndrome, resulting in severe, persistent 
dystonia, developmental delays and sensorineural hearing 
loss [42]. ACTB has long been considered an endogenous 
housekeeping gene and has been widely used as a refer-
ence gene/protein to reflect gene expression in tumors. 
Evidence increasingly demonstrated that ACTB is dys-
regulated in liver, melanoma, kidney, colorectal, gastric, 
pancreatic, esophageal, lung, breast, prostate, ovarian, 

Fig. 5 Differential expression analysis of CXCR4, ITGAM, ACTB, RHOA 
RPS27A, UBA52, and RPL8 in MS patient PBMC using RT-qPCR assay
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leukemia and lymphoma. The aberrant expression and 
aggregation of ACTB and alterations in the cytoskeleton 
are associated with cancer aggressiveness and metastasis 
[43], suggesting that ACTB may be expressed at differ-
ent levels in different environments and under different 
experimental conditions.

So far, RPS27A, UBA52, and RPL8 have not been 
reported in MS, and our study suggests that these genes 
are worthy of further study in MS.

Support vector machine (SVM) is a popular machine 
learning method widely used with biomedical data anal-
ysis. In this study, a diagnostic model of MS was devel-
oped based on SVM using the expression profiles of 
seven potential markers, and had an AUC of 0.907 in the 
training set, suggesting the accuracy of using these seven 
hub genes in classifying MS. We first validated the model 
in the dataset GSE21942 of the same platform with an 
AUC of 1 and an accuracy of 100%, and further validated 
the model in the dataset GSE43591 of a different plat-
form and obtained an AUC of 1. Such results indicated 
the applicability of our diagnostic model to data from 
different chip platforms. Finally, to examine the model’s 
prediction of data from different sources, the dataset 
GSE15245 originated from blood samples was applied 
for verification and an AUC of 0.929 was obtained, which 
indicates the reproducibility of the model. Moreover, 
the 7-gene diagnostic model can also be used to classify 
patients based on blood samples, thus, our model may 
have broad application prospects in clinical practice.

Although we used bioinformatics techniques to iden-
tify potential candidate markers involved in MS occur-
rence from a large sample, the study also has several 
limitations. Firstly, the sample lacked clinical follow-up 
information, thus, we did not consider factors such as the 
presence of other health states of the patient in affecting 
the identification of diagnostic biomarkers from the sam-
ples. Secondly, the results obtained only by bioinformat-
ics analysis will require further experimental validation. 
Third, the study does not include any clinically isolated 
syndrome (CIS) cases or patients with other neurological 
diseases that make up the differential diagnoses for MS. 
Lastly, the model only benefited for MS patients. There-
fore, further genetic and experimental studies with larger 
sample sizes and experimental validation are needed.

Conclusions
In summary, in this study, we systematically analyzed the 
gene expression profiles of 248 blood samples, and con-
structed an aberrantly expressed gene signature involv-
ing a variety of important biological pathways for MS. 
Finally, we determined seven potential markers for MS 
based on protein interaction networks and developed a 
highly accurate diagnostic model, which is applicable to 

different microarray platforms and can be used in blood 
samples (mean AUC = 0.96). The findings of this study 
provide targets and references for clinicians and bio-lab-
oratory scientists.

Methods
Briefly, this study began with data collection and differ-
ential expression analysis, and multiple data integration 
analysis to identify key differential genes, followed by 
function enrichment analysis, protein interaction net-
work construction, feature selection, and construction 
and validation of the classifier (Fig. 6).

Data collection
The NCBI GEO database was systematically searched to 
identify GEO datasets with microarray expression data 
relevant to MS. Only studies conducted with periph-
eral blood were included in our analysis. Data sets 
with < 10 samples and studies without control samples 
were excluded. MS pathology types were PPMS/RRMS/
SPMS/CIS and samples derived from patients prior to 
drug treatment were included to subsequent analyses. 
Finally, four datasets (GSE21942, GSE43591, GSE15245, 
and GSE17048) were screened. GSE21942 and GSE43591 
were downloaded from Affymetrix Human Genome 
U133 Plus 2.0 Array platform, GSE15245 and GSE17048 
were respectively downloaded from Affymetrix Human 
Genome U133A 2.0 Array platform data and Illumina 
HumanHT-12 V3.0 expression beadchip. We obtained 
standardized expression profiling data of 84 control 
samples and 174 MS samples from the GEO database, 
and the sample information for each dataset was shown 
in Table  1. The GSE21942, GSE43591, and GSE15245 
data sets are standardized by RMA, and the GSE17048 
data sets are standardized by cubic spline. The probes 
were matched to genes, and those matched to multiple 
genes were removed. When multiple probes matched to 
one gene, the median of these probes were taken as the 
expression value for the gene. Here, we obtained four 
gene expression profiles.

Integration of multiple data sets to identify differentially 
expressed genes
The differentially expressed genes (DEGs) between nor-
mal samples and MS samples were screened by R soft-
ware package limma [44] in GSE21942, GSE43591 and 
GSE17048. To include more genes with high differences, 
FDR < 0.05 and |log2(Foldchange)|> 1 was used as the 
thresholds to screen DEGs. The R package RobustRank-
Aggreg [45] was used to integrate the DEGs screened 
from the three gene expression profiles, and genes with 
a score value less than 0.01 were considered as the DEGs. 
The distribution of fold change of DEGs in different data 
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sets and the enrichment relationship of DEGs in different 
data sets were examined by performing GSEA analysis 
of DEGs using the rank order of fold change of genes in 
each data set as a background.

Functional enrichment analyses
Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment 

analysis were performed using the clusterProfiler 
[46] for analyzing the gene relationship with DEGs. 
Subsequently, over-represented GO terms in biologi-
cal processes and KEGG pathway were identified and 
visualized using the R package GOplot [47]. For both 
analyses, FDR < 0.05 was considered to denote statisti-
cal significance.

Fig. 6 The workflow of the study

Table 1 Studies and data included in this analysis

GEO accession Sample size Sample source Platform

MS case Control

GSE21942 14 15 Peripheral blood GPL570 Affymetrix Human Genome U133 Plus 2.0 Array

GSE43591 10 10 Peripheral blood GPL570 Affymetrix Human Genome U133 Plus 2.0 Array

GSE15245 51 14 Peripheral blood GPL571 Affymetrix Human Genome U133A 2.0 Array

GSE17048 99 45 Peripheral blood GPL6947 Illumina HumanHT-12 V3.0 expression beadchip

Total 174 84
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Protein interaction network construction and identification 
of key genes
The STRING Database (https:// string- db. org/), which 
is an online platform for predicting gene interactions, 
is designed to collect, evaluate and integrate all public 
"protein–protein" interaction resources and to comple-
ment the results of computer predictions [48]. To analyze 
the interaction correlations of DEGs, we mapped DEGs 
to the STRING (version 11.0) database to obtain the 
interaction relationships among the genes. A combined 
score > 0.4 served as the threshold to establish a PPI net-
work, and then the topological properties of the network 
was visualized and analyzed by Cytoscape24 software 
(version 3.7.1) [49]. In addition, the plug-in cytoHubba25 
[50] in Cytoscape software was used to calculate the net-
work’s degree, closeness and betweenness for identifying 
key genes from the PPI network.

Construction of MS diagnostic prediction model 
and assessment of predictive performance of the model
Support Vector Machine (SVM) is a supervised learning 
model for machine learning algorithms and can be used 
to analyze data and identify gene expression patterns. 
The SVM could construct a hyperplane in high or infi-
nite dimensional space for classification and regression. 
Specifically, based on a set of training samples with each 
marker belonging to one of two categories, a SVM train-
ing algorithm builds a model that assigns new instances 
to one or multiple categories, making it a non-probabil-
istic binary linear classification. Here, according to the 
expression profiles of key genes, we constructed a diag-
nostic prediction model based on SVM classification (51). 
We used GSE17048 as a training dataset, and GSE21942 
and GSE43591 as validation sets. Additionally, GSE15245 
served as an independent set of external validation sets 
to validate the prediction performance of the model. 
The model was constructed in the training dataset and 
its classification capability was validated using a tenfold 
cross-validation method. Samples from the validation 
dataset were predicted using the built model. The predic-
tive ability of the model was reflected by the area under 
the ROC curve (AUC), and the sensitivity and specificity 
of the model to predict MS patients were analyzed.

RT‑qPCR
TRIzol (Thermo, 15,596,026) were applied to extract 
total RNA from peripheral blood mononuclear cell 
(PBMC), included 4 MS patients and 5 control samples. 
The synthesis of total RNA into cDNA was conducted 
according to the instructions of the reverse tran-
scription kit (Thermo, BTK1622). Amplification was 

performed by conducting real-time polymerase chain 
reaction in an ABI 7500 real-time PCR instrument with 
an one-step qRT-PCR Kit (FP303, Tiangen Biochemi-
cal Technology (Beijing) Co., Ltd.). The primers were 
as follows: CXCR4 forward, CTT GAC ACT GGA TAT 
ACA CTT CAG  and reverse, AAC AGG GTT CCT TCA 
TGG AG; ITGAM forward, CAA TAT CAG GTC AGC 
AAC CTG and reverse, ATG ACA GTC TGG TTC AGC C; 
ACTB forward, GAA GAT CAA GAT CAT TGC TCCTC 
and reverse, ATC CAC ATC TGC TGG AAG G; RHOA 
forward, AGT TCC CAG AGG TGT ATG TG and reverse, 
CCA ACT CTA CCT GCT TTC CA; GAPDH forward, 
TCA AGA TCA TCA GCA ATG CC and reverse, CGA 
TAC CAA AGT TGT CAT GGA; GAPDH was an inter-
nal control.  2−△△Ct was used to calculate the relative 
expressions. The T test was used to analyze the differ-
ences in gene expression between the two groups.
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